jueves, 13 de noviembre de 2008

TORNO

EQUIPO AUXILIAR


PLATO DE GARRAS

Se requieren ciertos accesorios, como sujetadores para la pieza de trabajo, soportes y portaherramientas. Algunos accesorios comunes incluyen:Plato de sujeción de garras: sujeta la pieza de trabajo en el cabezal y transmite el movimiento.



PLATO Y PERNO DE ARRASTRE

Centros: soportan la pieza de trabajo en el cabezal y en la contrapunta.
Perno de arrastre: Se fija en el plato de torno y en la pieza de trabajo y le transmite el movimiento a la pieza cuando está montada entre centros.

Soporte fijo o luneta fija: soporta el extremo extendido de la pieza de trabajo cuando no puede usarse la contrapunta.

Soporte móvil o luneta móvil: se monta en el carro y permite soportar piezas de trabajo largas cerca del punto de corte.

Torreta portaherramientas con alineación múltiple.
Plato de arrastre: para amarrar piezas de difícil sujeción.
Plato de garras independientes: tiene 4 garras que actúan de forma independiente unas de otras.



BROCAS DE CENTRAJE DE ACERO RÁPIDO

HERRAMIENTA DE METAL DURO SOLDADA.

Las herramientas de torneado se diferencian en dos factores, el material del que están constituidas y el tipo de operación que realizan. Según el material constituyente, las herramientas pueden ser de acero rápido, metal duro soldado o plaquitas de metal duro (widia) intercambiables.
La tipología de las herramientas de metal duro está normalizada de acuerdo con el material que se mecanice, puesto que cada material ofrece unas resistencias diferentes. El código ISO para herramientas de metal duro se recoge en la tabla más abajo.
Cuando la herramienta es de acero rápido o tiene la plaquita de metal duro soldada en el portaherramientas, cada vez que el filo se desgasta hay que desmontarla y afilarla correctamente con los ángulos de corte específicos en una afiladora. Esto ralentiza bastante el trabajo. Por ello, cuando se mecanizan piezas en serie lo normal es utilizar portaherramientas con plaquitas intercambiables, que tienen varias caras de corte de usar y tirar y se reemplazan de forma muy rápida.

ESPECIFICACIONES TÉCNICAS DE LOS TORNOS

Principales especificaciones técnicas de los tornos convencionales:

CAPACIDAD ALTURA ENTRE PUNTOS;

distancia entre puntos;
diámetro admitido sobre bancada;
diámetro admitido sobre escote;
diámetro admitido sobre carro transversal;
anchura de la bancada;
longitud del escote delante del plato liso.

CABEZAL DIÁMETRO DEL AGUJERO DEL HUSILLO PRINCIPAL;

nariz del husillo principal;
cono Morse del husillo principal;
gama de velocidades del cabezal (habitualmente en rpm);
número de velocidades.

CARROS

recorrido del carro transversal;
recorrido del charriot;
dimensiones máximas de la herramienta,
gama de avances longitudinales;
gama de avances transversales.
recorrido del avance automático*
carro móvil de un torno*

ROSCADO

Gama de pasos métricos;
gama de pasos Witworth;
gama de pasos modulares;
gama de pasos Diametral Pitch;
paso del husillo patrón.

CONTRAPUNTO

Diámetro de la caña del contrapunto;
recorrido de la caña del contrapunto;
cono Morse del contrapunto.

MOTORES

Potencia del motor principal (habitualmente en kW);
potencia de la motobomba de refrigerante (en kW).

LUNETAS

No todos los tipos de tornos tienen las mismas especificaciones técnicas. Por ejemplo los tornos verticales no tienen contrapunto y solo se mecanizan las piezas sujetas al aire. El roscado a máquina con Caja Norton solo lo tienen los tornos paralelos.

MOVIMIENTOS DE TRABAJO EN LA OPERACIÓN DE TORNEADO

Movimiento de corte: por lo general se imparte a la pieza que gira rotacionalmente sobre su eje principal. Este movimiento lo imprime un motor eléctrico que transmite su giro al husillo principal mediante un sistema de poleas o engranajes. El husillo principal tiene acoplado a su extremo distintos sistemas de sujeción (platos de garras, pinzas, mandrinos auxiliares u otros), los cuales sujetan la pieza a mecanizar. Los tornos tradicionales tienen una gama fija de velocidades de giro, sin embargo los tornos modernos de Control Numérico la velocidad de giro del cabezal es variable y programable y se adapta a las condiciones óptimas que el mecanizado permite.

Movimiento de avance: es el movimiento de la herramienta de corte en la dirección del eje de la pieza que se está trabajando. En combinación con el giro impartido al husillo, determina el espacio recorrido por la herramienta por cada vuelta que da la pieza. Este movimiento también puede no ser paralelo al eje, produciéndose así conos. En ese caso se gira el carro charriot, ajustando en una escala graduada el ángulo requerido, que será la mitad de la conicidad deseada. Los tornos convencionales tiene una gama fija de avances, mientras que los tornos de Control Numérico los avances son programables de acuerdo a las condiciones óptimas de mecanizado y los desplazamientos en vacío se realizan a gran velocidad.

Profundidad de pasada: movimiento de la herramienta de corte que determina la profundidad de material arrancado en cada pasada. La cantidad de material factible de ser arrancada depende del perfil del útil de corte usado, el tipo de material mecanizado, la velocidad de corte, potencia de la máquina, avance, etc.

Nonios de los carros: para regular el trabajo de torneado los carros del torno llevan incorporado unos nonios en forma de tambor graduado, donde cada división indica el desplazamiento que tiene el carro, ya sea el longitudinal, el transversal o el charriot. La medida se va conformando de forma manual por el operador de la máquina por lo que se requiere que sea una persona muy experta quien lo manipule si se trata de conseguir dimensiones con tolerancias muy estrechas. Los tornos de control numérico ya no llevan nonios sino que las dimensiones de la pieza se introducen en el programa y estas se consiguen automáticamente.

OPERACIONES DE TORNEADO


CILINDRADO




ESQUEMA DE TORNEADO CILÍNDRICO.

Esta operación consiste en la mecanización exterior a la que se somete a las piezas que tienen mecanizados cilíndricos. Para poder efectuar esta operación, con el carro transversal se regula la profundidad de pasada y, por tanto, el diámetro del cilindro, y con el carro paralelo se regula la longitud del cilindro. El carro paralelo avanza de forma automática de acuerdo al avance de trabajo deseado. En este procedimiento, el acabado superficial y la tolerancia que se obtenga puede ser un factor de gran relevancia. Para asegurar calidad al cilindrado el torno tiene que tener bien ajustada su alineación y concentricidad.

El cilindrado se puede hacer con la pieza al aire sujeta en el plato de garras, si es corta, o con la pieza sujeta entre puntos y un perro de arrastre, o apoyada en luneta fija o móvil si la pieza es de grandes dimensiones y peso. Para realizar el cilindrado de piezas o ejes sujetos entre puntos, es necesario previamente realizar los puntos de centraje en los ejes.
Cuando el cilindrado se realiza en el hueco de la pieza se llama mandrinado.

REFRENTADO


ESQUEMA FUNCIONAL DE REFRENTADO
La operación de refrentado consiste en un mecanizado frontal y perpendicular al eje de las piezas que se realiza para producir un buen acoplamiento en el montaje posterior de las piezas torneadas. Esta operación también es conocida como fronteado. La problemática que tiene el refrentado es que la velocidad de corte en el filo de la herramienta va disminuyendo a medida que avanza hacia el centro, lo que ralentiza la operación. Para mejorar este aspecto muchos tornos modernos incorporan variadores de velocidad en el cabezal de tal forma que se puede ir aumentando la velocidad de giro de la pieza.

RANURADO

POLEAS TORNEADAS.El ranurado consiste en mecanizar unas ranuras cilíndricas de anchura y profundidad variable en las piezas que se tornean, las cuales tienen muchas utilidades diferentes. Por ejemplo, para alojar una junta tórica, para salida de rosca, para arandelas de presión, etc. En este caso la herramienta tiene ya conformado el ancho de la ranura y actuando con el carro transversal se le da la profundidad deseada. Los canales de las poleas son un ejemplo claro de ranuras torneadas.

ROSCADO EN EL TORNO Hay dos sistemas de realizar roscados en los tornos, de un lado la tradicional que utilizan los tornos paralelos, mediante la Caja Norton, y de otra la que se realiza con los tornos CNC, donde los datos de la roscas van totalmente programados y ya no hace falta la caja Norton para realizarlo.

PARA EFECTUAR UN ROSCADO CON HERRAMIENTA HAY QUE TENER EN CUENTA LO SIGUIENTE:Las roscas pueden ser exteriores (tornillos) o bien interiores (tuercas), debiendo ser sus magnitudes coherentes para que ambos elementos puedan enroscarse.
Los elementos que figuran en la tabla son los que hay que tener en cuenta a la hora de realizar una rosca en un torno:

PARA EFECTUAR EL ROSCADO HAY QUE REALIZAR PREVIAMENTE LAS SIGUIENTES TAREAS:

Tornear previamente al diámetro que tenga la rosca
Preparar la herramienta de acuerdo con los ángulos del filete de la rosca.
Establecer la profundidad de pasada que tenga que tener la rosca hasta conseguir el perfil adecuado.

ROSCADO EN TORNO PARALELO

Una de las tareas que pueden ejecutarse en un torno paralelo es efectuar roscas de diversos pasos y tamaños tanto exteriores sobre ejes o interiores sobre tuercas. Para ello los tornos paralelos universales incorporan un mecanismo llamado “caja Norton”, que facilita esta tarea y evita montar un tren de engranajes cada vez que se quisiera efectuar una rosca.
La caja Norton es un mecanismo compuesto de varios engranajes que fue inventado y patentado en 1890, que se incorpora a los tornos paralelos y dio solución al cambio manual de engranajes para fijar los pasos de las piezas a roscar. Esta caja puede constar de varios trenes desplazables de engranajes o bien de uno basculante y un cono de engranajes. La caja conecta el movimiento del cabezal del torno con el carro portaherramientas que lleva incorporado un husillo de rosca cuadrada.

El sistema mejor conseguido incluye una caja de cambios con varias reductoras. De esta manera con la manipulación de varias palancas se pueden fijar distintas velocidades de avance de carro portaherramientas, permitiendo realizar una gran variedad de pasos de rosca tanto métricos como withworth. Las hay en baño de aceite y en seco, de engranajes tallados de una forma u otra, pero básicamente es una caja de cambios.

EJE MOLETEADO.

El moleteado es un proceso de conformado en frío del material mediante unas moletas que presionan la pieza mientras da vueltas. Dicha deformación produce un incremento del diámetro de partida de la pieza. El moleteado se realiza en piezas que se tengan que manipular a mano, que generalmente vayan roscadas para evitar su resbalamiento que tendrían en caso de que tuviesen la superficie lisa.
El moleteado se realiza en los tornos con unas herramientas que se llaman moletas, de diferente paso y dibujo.
Un ejemplo de moleteado es el que tienen las monedas de 50 céntimos de euro, aunque en este caso el moleteado es para que los invidentes puedan identificar mejor la moneda.
El moleteado por deformación se puede ejecutar de dos maneras:
Radialmente, cuando la longitud moleteada en la pieza coincide con el espesor de la moleta a utilizar.
Longitudinalmente, cuando la longitud excede al espesor de la moleta. Para este segundo caso la moleta siempre ha de estar biselada en sus extremos.

TORNEADO DE CONOS

Un cono o un tronco de cono de un cuerpo de generación viene definido por los siguientes conceptos:
Diámetro mayor
Diámetro menor
Longitud
Ángulo de inclinación
Conicidad

PINZAS CÓNICAS PORTAHERRAMIENTAS.

Los diferentes tornos mecanizan los conos de formas diferentes.
En los tornos CNC no hay ningún problema porque, programando adecuadamente sus dimensiones, los carros transversales y longitudinales se desplazan de forma coordinada dando lugar al cono deseado.

En los tornos copiadores tampoco hay problema porque la plantilla de copiado permite que el palpador se desplace por la misma y los carros actúen de forma coordinada.
Para mecanizar conos en los tornos paralelos convencionales se puede hacer de dos formas diferentes. Si la longitud del cono es pequeña, se mecaniza el cono con el charriot inclinado según el ángulo del cono. Si la longitud del cono es muy grande y el eje se mecaniza entre puntos, entonces se desplaza la distancia adecuada el contrapunto según las dimensiones del cono.

TORNEADO ESFÉRICO

Esquema funcional torneado esférico

El torneado esférico, por ejemplo el de rótulas, no tiene ninguna dificultad si se realiza en un torno de Control Numérico porque, programando sus medidas y la función de mecanizado radial correspondiente, lo realizará de forma perfecta.
Si el torno es automático de gran producción, trabaja con barra y las rótulas no son de gran tamaño, la rotula se consigue con un carro transversal donde las herramientas están afiladas con el perfil de la rótula.

Hacer rótulas de forma manual en un torno paralelo presenta cierta dificultad para conseguir exactitud en la misma. En ese caso es recomendable disponer de una plantilla de la esfera e irla mecanizando de forma manual y acabarla con lima o rasqueta para darle el ajuste final.

SEGADO O TRONZADO


HERRAMIENTA DE RANURAR Y SEGAR.


Se llama segado a la operación de torneado que se realiza cuando se trabaja con barra y al finalizar el mecanizado de la pieza correspondiente es necesario cortar la barra para separar la pieza de la misma. Para esta operación se utilizan herramientas muy estrechas con un saliente de acuerdo al diámetro que tenga la barra y permita con el carro transversal llegar al centro de la barra. Es una operación muy común en tornos revólver y automáticos alimentados con barra y fabricaciones en serie.

CHAFLANADO

El chaflanado es una operación de torneado muy común que consiste en matar los cantos tanto exteriores como interiores para evitar cortes con los mismos y a su vez facilitar el trabajo y montaje posterior de las piezas. El chaflanado más común suele ser el de 1mm por 45º. Este chaflán se hace atacando directamente los cantos con una herramienta adecuada.

miércoles, 12 de noviembre de 2008

TORNO













PARTES DE UN TORNO PARALELO.

La función principal de un torno es suministrar un medio para hacer girar una pieza contra una herramienta de corte y, de esta manera, arrancar metal. Todos los tornos, sin importar su diseño o tamaño, son básicamente iguales y realizan tres funciones que consisten en proporcionar:
Un soporte para los accesorios del torno o la pieza.
Una manera de sostener y hacer girar la pieza.
Un medio para sostener y mover la herramienta de corte.


BANCADA: Es una pieza fundida pesada y hasta hecha para soportar las partes de trabajo del torno. En su parte superior están maquinadas las gulas con las que se dirigen y alinean las partes principales del mismo. Muchos tornos se fabrican con guías templadas de fragua y rectificadas con el fin de reducir el desgaste y mantener la precisión.

Observe que la bancada de este torno tiene guías planas y planas y prismáticas o en V.

CABEZAL

Está sujeto al lado izquierdo de la bancada. El husillo del cabezal, una flecha cilíndrica hueca apoyada en cojinetes, proporciona una transmisión del motor a los dispositivos para sostener la pieza. Para sostener e impulsar el trabajo, puede ajustarse un punto vivo y manguito, un plato plano o cualquier otro tipo de plato a la nariz del husillo. El punto vivo tiene una punta de 60° que suministra una superficie de cojinete para que la pieza gire entre los puntos.
Los tornos más modernos están equipados con engranes y el husillo a impulsado por una serie de ellos que m encuentran en el cabezal. Esta disposición permite obtener varias velocidades del husillo para ajustarse a tipos y tamaños diferentes de la pieza.
La palanca de inversión del avance puede colocarse en tres posiciones: la de arriba hace que la barra alimentadora y el tonillo principal de avance se muevan hacia adelante, la central es neutra y la de abajo invierte la dirección de movimiento de la barra y del tornillo.

CAJA DE ENGRANES DE CAMBIO RÁPIDO

Esta caja, la cual contiene varios engranes de tamaños diferentes, hace posible dar a la barra alimentadora y al tornillo principal de avance varias velocidades para las operaciones de torneado y de roscado. La barra alimentadora y el tornillo de avance constituyen la transmisión para el carro principal al embragar la palanca de avance automático o la palanca de tuerca dividida.

CARRO PRINCIPAL

Soporta la herramienta de corte y se emplea para moverla a lo largo de la bancada en las operaciones de torneado. El carro consta de tres partes principales: el asiento, la palanca delantal y el cursor transversal.
El asiento, una pieza fundida con forma de H que se encuentra montada sobre la parte superior de las guías del torno, da soporte al carro transversal, el cual proporciona el movimiento transversal a la herramienta de corte. El soporte combinado (u orientable) se emplea para sostener la herramienta de corte y se le puede hacer girar hasta formar cualquier ángulo horizontal para realizar las operaciones de torneado cónico. El cursor transversal y el soporte combinado se mueven por medio de tornillos de avance. Cada uno de ellos tiene un tambor graduado para poder hacer ajustes exactos de las herramientas de corte.
La placa delantal está sujeta al asiento y aloja los mecanismos de avance, los cuales dan lugar a un avance automático del carro. Se utiliza la palanca de avance automático para embragar el avance deseado al carro. La manivela del carro puede hacerse girar a mano para que el carro se mueva a lo largo de la bancada. Esta manivela está conectada a un engrane que se acopla a una cremallera sujeta a la bancada. El émbolo direccional de avance puede colocarse en tres posiciones: en la posición adentro embraga el avance longitudinal del carro, la central o neutra se emplea en el roscado, para permitir el embrague de la palanca de tuerca dividida; la posición afuera sirve cuando se requiere un avance transversal automático.

CABEZA MÓVIL

Está formada por dos unidades. La mitad superior puede ajustarse sobre la base por medio de dos tornillos, a fin de alinear los puntos del cabezal móvil y del cabezal fijo cuando se va a realizar torneado cilíndrico. También pueden emplearse estos tornillos para descentrar el cabezal móvil con el fin de realizar torneado cilíndrico entre los puntos. El cabezal móvil puede fijarse en cualquier posición a lo largo de la bancada si se aprieta la palanca o tuerca de sujeción. Uno de los extremos del punto muerto es cónico para que pueda ajustarse al husillo del cabezal móvil, mientras que el otro extremo tiene una punta de 60° para dar un apoyo de cojinete al trabajo que se tornea entre los puntos. En el husillo de este cabezal también pueden sostenerse otras herramientas estándar de mango cónico, corno los escariadores y las brocas. Se emplea una palanca de sujeción del husillo, o manija de apriete, para mantener al husillo en una posición fija. La manivela mueve al husillo hacia adentro y hacia afuera de la pieza fundida que constituye el cabezal móvil: también puede emplearse para realizar avance manual en las operaciones de taladrado y escariado.



LOS CARROS.

CARRO LONGITUDINAL.

El carro longitudinal es el cual tiene como desplazamiento la bancada, este carro nos proporciona el movimiento a través de un engrane con la cremallera y un tornillo sin fin, cuenta con un automático el cual es operado por medio de la barra colisa, este automático sirve para hacer la operación de roscado. El volante tiene una graduación para que uno mida la profundidad que se le da a los cortes

CARRO TRANSVERSAl

Este Carro cuenta con un movimiento transversal a eso debe su nombre, también tiene una manivela graduada, cuenta con el carro automático, y sobre él esta montado el carro auxiliar.
CARRO AUXILIAR. El carro auxiliar es el cual tiene la responsabilidad para realizar el tallado de los conos variando el ángulo de inclinación del mismo, este esta regulado por una placa graduada y para su fijación del carro cuenta por lo regular con 4 tornillos. Sobre este se encuentra la tortea portaherramientas




TORNOS ANTIGUOS

Con la posibilidad de poder cilindrar y dar forma a diversos utensilios, instrumentos y piezas ornamentales de madera y otros materiales, el hombre inventó y desarrolló el proceso de torneado.
El torno es una de las primeras máquinas inventadas remontándose su uso quizá al año 1000 y con certeza al 850 a. C. La imagen más antigua que se conserva de los primitivos tornos es un relieve hallado en la tumba de Petosiris, un sumo sacerdote egipcio que murió a fines del s. I. En 1250 nació el torno de pedal y pértiga flexible, que representó un gran avance sobre el accionado por arquillo, puesto que permitía dejar las manos del operario libres para manejar la herramienta. A comienzos del siglo XV se introdujo un sistema de transmisión por correa, que permitía usar el torno en rotación continua. A finales del siglo XV, Leonardo da Vinci trazó en su Códice Atlántico el boceto de varios tornos que no pudieron ser construidos entonces por falta de medios pero que sirvieron de orientación para futuros desarrollos.
Hacia 1480 el pedal fue combinado con un vástago y una biela. Con la aplicación de este mecanismo nació el torno de accionamiento continuo, lo que implicaba el uso de biela-manivela, que debía ser combinada con un volante de inercia para superar los puntos muertos.
Se inició el mecanizado de metales no férreos, como latón, cobre y bronce y, con la introducción de algunas mejoras, este torno se siguió utilizando durante varios siglos. En la primitiva estructura de madera se introdujeron elementos de fundición, tales como la rueda, los soportes del eje principal, contrapunto, apoyo de herramientas y, hacia el año 1586, el mandril [2] (una pieza metálica, cilíndrica, en donde se fija el objeto a tornear)

TORNOS MECÁNICOs

TORNO PARALELO DE 1911


Al comenzar la Revolución Industrial en Inglaterra, durante el siglo XVII, se desarrollaron tornos capaces de dar forma a una pieza metálica. El desarrollo del torno pesado industrial para metales en el siglo XVIII hizo posible la producción en serie de piezas de precisión.
En la década de 1780 el inventor francés Jacques de Vaucanson construyó un torno industrial con un portaherramientas deslizante que se hacía avanzar mediante un tornillo manual. Hacia 1797 el inventor británico Henry Maudslay y el inventor estadounidense David Wilkinson mejoraron este torno conectando el portaherramientas deslizante con el 'husillo', que es la parte del torno que hace girar la pieza trabajada. Esta mejora permitió hacer avanzar la herramienta de corte a una velocidad constante. En 1820, el mecánico estadounidense Thomas Blanchard inventó un torno en el que una rueda palpadora seguía el contorno de un patrón para una caja de fusil y guiaba la herramienta cortante para tornear una caja idéntica al patrón, dando así inicio a lo que se conoce como torno copiador.

El torno revólver, desarrollado durante la década de 1840, incorpora un portaherramientas giratorio que soporta varias herramientas al mismo tiempo. En un torno revólver puede cambiarse de herramienta con sólo girar el portaherramientas y fijarlo en la posición deseada. Hacia finales del siglo XIX se desarrollaron tornos de revólver automáticos para cambiar las herramientas de forma automática. En 1833, Joseph Whitworth se instaló por su cuenta en Manchester. Sus diseños y realizaciones influyeron de manera fundamental en otros fabricantes de la época. En 1839 patentó un torno paralelo para cilindrar y roscar con bancada de guías planas y carro transversal automático, que tuvo una gran aceptación. Dos tornos que llevan incorporados elementos de sus patentes se conservan en la actualidad. Uno de ellos, construido en 1843, se conserva en el "Science Museum" de Londres. El otro, construido en 1850, se conserva en el "Birmingham Museum".


Fue J.G. Bodmer quien en 1839 tuvo la idea de construir tornos verticales. A finales del siglo XIX, este tipo de tornos eran fabricados en distintos tamaños y pesos. El diseño y patente en 1890 de la caja de Norton, incorporada a los tornos paralelos, dio solución al cambio manual de engranajes para fijar los pasos de las piezas a roscar.

INTRODUCCIÓN DEL CONTROL NUMÉRICO



MODERNO DE CONTROL NUMÉRICO.
El torno de control numérico es un ejemplo de automatización programable. Se diseñó para adaptar las variaciones en la configuración de los productos. Su principal aplicación se centra en volúmenes de producción medios de piezas sencillas y en volúmenes de producción medios y bajos de piezas complejas. Uno de los ejemplos más importantes de automatización programable es el control numérico en la fabricación de partes metálicas. El control numérico (CN) es una forma de automatización programable en la cual el equipo de procesado se controla a través de números, letras y otros símbolos. Estos números, letras y símbolos están codificados en un formato apropiado para definir un programa de instrucciones para desarrollar una tarea concreta. Cuando la tarea en cuestión cambia, se cambia el programa de instrucciones. La capacidad de cambiar el programa hace que el CN sea apropiado para volúmenes de producción bajos o medios, dado que es más fácil escribir nuevos programas que realizar cambios en los equipos de procesado.
El primer desarrollo en el área del control numérico lo realizó el inventor norteamericano John T. Parsons (Detroit 1913-2007), junto con su empleado Frank L. Stulen, en la década de 1940. El concepto de control numérico implicaba el uso de datos en un sistema de referencia para definir las superficies de contorno de las hélices de un helicóptero. La aplicación del control numérico abarca gran variedad de procesos. Se dividen las aplicaciones en dos categorías:
- Aplicaciones con máquina herramienta, tales como el taladrado, laminado, torneado, etc.
- Aplicaciones sin máquina herramienta, tales como el ensamblaje, trazado e inspección.
El principio de operación común de todas las aplicaciones del control numérico es el control de la posición relativa de una herramienta o elemento de procesado con respecto al objeto a procesar.

TIPOS DE TORNOS
Actualmente se utilizan en las industrias de mecanizados los siguientes tipos de tornos que dependen de la cantidad de piezas a mecanizar por serie, de la complejidad de las piezas y de la envergadura de las piezas

TORNO PARALELO

CAJA DE VELOCIDADES Y AVANCES DE UN TORNO PARALELO

El torno paralelo o mecánico es el tipo de torno que evolucionó partiendo de los tornos antiguos cuando se le fueron incorporando nuevos equipamientos que lograron convertirlo en una de las máquinas herramienta más importante que han existido. Sin embargo, en la actualidad este tipo de torno está quedando relegado a realizar tareas poco importantes, a utilizarse en los talleres de aprendices y en los talleres de mantenimiento para realizar trabajos puntuales o especiales.
Para la fabricación en serie y de precisión han sido sustituidos por tornos copiadores, revólver, automáticos y de CNC. Para manejar bien estos tornos se requiere la pericia de profesionales muy bien calificados, ya que el manejo manual de sus carros puede ocasionar errores a menudo en la geometría de las piezas torneadas

TORNO COPIADOR


ESQUEMA FUNCIONAL DE TORNO COPIADOR

Se llama torno copiador a un tipo de torno que operando con un dispositivo hidráulico y electrónico permite el torneado de piezas de acuerdo a las

ESQUEMA FUNCIONAL DE TORNO COPIADOR

Se llama torno copiador a un tipo de torno que operando con un dispositivo hidráulico y electrónico permite el torneado de piezas de acuerdo a las escariando la parte interior mecanizada y a la vez se puede ir cilindrando, refrentando, ranurando, roscando y cortando con herramientas de torneado exterior.

La característica principal del torno revólver es que lleva un carro con una torreta giratoria de forma hexagonal que ataca frontalmente a la pieza que se quiere mecanizar. En la torreta se insertan las diferentes herramientas que realizan el mecanizado de la pieza. Cada una de estas herramientas está controlada con un tope de final de carrera. También dispone de un carro transversal, donde se colocan las herramientas de segar, perfilar, ranurar, etc.
También se pueden mecanizar piezas de forma individual, fijándolas a un plato de garras de accionamiento hidráulico. Este Torno es groso

TORNO AUTOMÁTICO

Se llama torno automático a un tipo de torno cuyo proceso de trabajo está enteramente automatizado. La alimentación de la barra necesaria para cada pieza se hace también de forma automática, a partir de una barra larga que se inserta por un tubo que tiene el cabezal y se sujeta mediante pinzas de apriete hidráulico.

ESTOS TORNOS PUEDEN SER DE UN SOLO HUSILLO O DE VARIOS HUSILLOS:
Los de un solo husillo se emplean básicamente para el mecanizado de piezas pequeñas que requieran grandes series de producción.

Cuando se trata de mecanizar piezas de dimensiones mayores se utilizan los tornos automáticos multihusillos donde de forma programada en cada husillo se va realizando una parte del mecanizado de la pieza. Como los husillos van cambiando de posición, el mecanizado final de la pieza resulta muy rápido porque todos los husillos mecanizan la misma pieza de forma simultánea.

La puesta a punto de estos tornos es muy laboriosa y por eso se utilizan principalmente para grandes series de producción. El movimiento de todas las herramientas está automatizado por un sistema de excéntricas y reguladores electrónicos que regulan el ciclo y los topes de final de carrera.

Un tipo de torno automático es el conocido como "tipo suizo", capaz de mecanizar piezas muy pequeñas con tolerancias muy estrechas.

TORNO VERTICAL

El torno vertical es una variedad de torno diseñado para mecanizar piezas de gran tamaño, que van sujetas al plato de garras u otros operadores y que por sus dimensiones o peso harían difícil su fijación en un torno horizontal.

Los tornos verticales tienen el eje dispuesto verticalmente y el plato giratorio sobre un plano horizontal, lo que facilita el montaje de las piezas voluminosas y pesadas. Es pues el tamaño lo que identifica a estas máquinas, permitiendo el mecanizado integral de piezas de gran tamaño.
En los tornos verticales no se pueden mecanizar piezas que vayan fijadas entre puntos porque carecen de contrapunta. Debemos tener en cuenta que la contrapunta se utiliza cuando la pieza es alargada, ya que cuando la herramienta esta arrancado la viruta ejerce una fuerza que puede hacer que flexione el material en esa zona y quede inutilizado. Dado que en esta maquina se mecanizan piezas de gran tamaño su único punto de sujeción es el plato sobre el cual va apoyado. La manipulación de las piezas para fijarlas en el plato se hace mediante grúas de puente o polipastos.

TORNO CNC


El torno CNC es un tipo de torno operado mediante control numérico por computadora. Se caracteriza por ser una máquina herramienta muy eficaz para mecanizar piezas de revolución. Ofrece una gran capacidad de producción y precisión en el mecanizado por su estructura funcional y porque la trayectoria de la herramienta de torneado es controlada a través del ordenador que lleva incorporado, el cual procesa las órdenes de ejecución contenidas en un software que previamente ha confeccionado un programador conocedor de la tecnología de mecanizado en torno. Es una máquina ideal para el trabajo en serie y mecanizado de piezas complejas.
EJE MOLETEADO

MOLETEADO
Roscado en torno paralelo
Roscado en el torno
Poleas torneadas
Ranurado
Esquema funcional de refrentado
Refrentado

REFRENTADO
Artículo principal
Esquema de torneado cilíndrico
Artículo principal: Cilindrado
Cilindrado
Operaciones de torneado
Movimientos de trabajo en la operación de torneado

LUNETAS
Motores
Contrapunto
Roscado
Carros
Cabezal Diámetro del agujero del husillo principal;
Capacidad Altura entre puntos


ESPECIFICACIONES TÉCNICAS DE LOS TORNOS

Herramienta de metal duro soldada.
Brocas de centraje de acero rápido
Herramientas de torneado
Plato y perno de arrastre
Plato de garras
Equipo auxiliar

EL TORNO TIENE CUATRO COMPONENTES PRINCIPALES:

Torno paralelo en funcionamiento
Estructura del torno

OTROS TIPOS DE TORNOS



PIEZAS DE AJEDREZ MECANIZADAS EN UN TORNO CNC.


Las herramientas van sujetas en un cabezal en número de seis u ocho mediante unos portaherramientas especialmente diseñados para cada máquina. Las herramientas entran en funcionamiento de forma programada, permitiendo a los carros horizontal y transversal trabajar de forma independiente y coordinada, con lo que es fácil mecanizar ejes cónicos o esféricos así como el mecanizado integral de piezas complejas.
La velocidad de giro de cabezal porta piezas, el avance de los carros longitudinal y transversal y las cotas de ejecución de la pieza están programadas y, por tanto, exentas de fallos imputables al operario de la máquina.[4]

OTROS TIPOS DE TORNOS


Además de los tornos empleados en la industria mecánica, también se utilizan tornos para trabajar la madera, la ornamentación con mármol o granito.
El nombre de "torno" se aplica también a otras máquinas rotatorias como por ejemplo el torno de alfarero o el torno dental. Estas máquinas tienen una aplicación y un principio de funcionamiento totalmente diferentes de las de los tornos descritos en este artículo.

ESTRUCTURA DEL TORNO

EL TORNO TIENE CUATRO COMPONENTES PRINCIPALES:

Bancada: sirve de soporte para las otras unidades del torno. En su parte superior lleva unas guías por las que se desplaza el cabezal móvil o contrapunto y el carro principal.
Cabezal fijo: contiene los engranajes o poleas que impulsan la pieza de trabajo y las unidades de avance. Incluye el motor, el husillo, el selector de velocidad, el selector de unidad de avance y el selector de sentido de avance. Además sirve para soporte y rotación de la pieza de trabajo que se apoya en el husillo.

Contrapunto: el contrapunto es el elemento que se utiliza para servir de apoyo y poder colocar las piezas que son torneadas entre puntos, así como otros elementos tales como porta broca o broca para hacer taladros en el centro de los ejes. Este contrapunto puede moverse y fijarse en diversas posiciones a lo largo de la bancada.

Carros portaherramientas: consta del carro principal, que produce los movimientos de avance y profundidad de pasada y del carro transversal, que se desliza transversalmente sobre el carro principal. En los tornos paralelos hay además un carro superior orientable, formado a su vez por tres piezas: la base, el charriot y la porta herramientas. Su base está apoyada sobre una plataforma giratoria para orientarlo en cualquier dirección.

cabezal giratorio o chuck : Su función consiste en sujetar la pieza a maquinar, hay varios tipos como el chuck independiente de 4 mordazas o el universal mayormente empleado en el taller mecánico al igual hay cuck magnéticos y de seis mordazas.



NOMENCLATURA

1) Dial selector de avances,
2) Selectores de avance
3) Selector sentido de avance, sentido de la rosca.
4) Interruptor principal (en la parte posterior)
5) Dial selector de velocidades
6) Palanca selectora de la gama de velocidades.
7) Pulsador de marcha (motor principal)
8) Pulsador de parada (motor principal)
9) Pulsador de parada de emergencia.
10) Pulsador para soltar el freno
11) Pulsadores de la bomba de refrigeración.
12) Pulsadores de la bomba hidráulica.
13) Pulsadores de plato de potencia.
14) Tornillo de blocaje del carro superior.
15) Tornillo de blocaje del carro transversal
16) Manivela de translación del carro superior.
17) Manivela de translación del carro transversal.
18) Tornillo de blocaje del carro longitudinal.
19) Blocaje de la caña del contrapunto.
21) Volante de translación de la caña.
22) Balón de blocaje auxiliar del contrapunto.
23) Tornillo de desplazamiento del contrapunto.
24) Palanca de mando del husillo.
25) Volante de translación del carro longitudinal.
26) Mando de engrase central.
27) Regulación de disparo de avance.
28) Acoplamiento de avance.
29) Inversión del avance.
30) Acoplamiento del avance de roscado.


TORNO PARALELO.

El torno paralelo, para cilindrar y roscar, trabaja la pieza situada horizontalmente; es el más utilizado, gracias a la universalidad de sus movimientos. Algunos tornos paralelos modernos tienen dimensiones verdaderamente considerables; se construyen en la actualidad tornos paralelos que, para una altura de puntos de 900 mm. Tienen una longitud útil de 18 metros.